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For the last decades we have lived with the promise of one day being able to own a robot that can coexist,
collaborate and cooperate with humans in our everyday lives. Recent advancements in low-cost hardware
and accessible accelerated computing have driven the capabilities of robots to new levels, performing tasks
outside of structured factory environments. Hence, the vision of a future with robots integrated in society,
helping us in the household, in hospitals and at work, might seem attainable. Nevertheless, we are yet to see
robots fluidly collaborating with humans and other robots in the human-centric dynamic spaces we inhabit.
In fact, the robots currently being deployed in human close-proximity are designed to be highly conservative
and risk-averse (avoiding any type of contact), slow and lightweight, stopping abruptly when humans are
close, unable to communicate fluidly with humans or to handle heavy loads or exert high forces alongside or
together with a human - rendering them inefficient and hard to use for non-experts. For robots to truly make
a positive impact in our society and improve our quality of life, they have to be efficient, reactive, easy to
communicate with and train, capable of predicting and avoiding unsafe situations in dynamic environments,
as well as performing heavy-load physical assistive tasks in a safe, fluid and trustworthy manner. Achieving
all of these behavioral objectives in a robot is challenging as no single optimization or data-driven approach is
capable of encoding such nuanced and potentially contradicting goals and constraints in an efficient manner.

Towards Fluid Human-Robot Collaborative Autonomy Humans, on the other hand, have the
remarkable capabilities to learn, adapt, and master new tasks while being efficient and safe when inter-
acting with other humans, leading to a central question in my research. Can we build robots that effi-
ciently learn new tasks from humans and learn to safely interact with humans, just like humans do? My
research goal is, thus, to develop the physical and perceptual adaptive intelligence needed for robots
to learn from and interact with humans while being able to adapt to a wide-range of capabilities and needs;

Figure 1: Towards Fluid Collaborative
Human-Robot Autonomy through tightly
coupled control, learning and estimation.

from able-bodied humans that seek to teach robots to accom-
plish cumbersome dexterous manipulation tasks to mobility-
impaired humans that require physical assistance in simple ac-
tivities of daily living, like lifting and standing. In particu-
lar, my research develops tightly coupled learning, con-
trol and robust estimation algorithms to achieve fluid
human-robot collaborative autonomy with safety, ef-
ficiency and robustness guarantees. My key insight is
that fluid physical human-robot collaboration requires each of
the processing units (perception, planning and control) used
to govern the robot’s behavior to possess two critical proper-
ties: i) be reactive and adaptive to perceptual, state changes
and feedback from the connected processing layers while re-
maining safe and stable (Fig. 2) and ii) be aware of perceptual,
physical and cognitive constraints of both the human and robot
(Fig. 3). In order to develop these algorithmic advancements
for the entire stack of the robot’s processing units I leverage
interdisciplinary approaches that combine insights from control
theory, optimization, machine learning and cognitive science.
During my PhD and postdoctoral work, I found that purely
data-driven techniques lack rigorous guarantees, crucial for safety-critical tasks - in particular tasks with
the human-in-the-loop. To address this, I devised creative approaches that step over traditional disciplinary
boundaries, seamlessly blending concepts from control theory, robotics and machine learning [1]. Notably, I
have been pioneering dynamical system (DS) based learning from demonstration (LfD), an imitation learn-
ing (IL) paradigm that assumes human and robot motion can be represented as an autonomous DS, rather
than an open-ended feed-forward policy as in standard algorithmic IL strategies. Representing robot motion
policies through DS enables the satisfaction of control-theoretic guarantees such as stability, convergence and



Figure 2: Proposed Reactive Framework for Robust Human-in-the-loop Robot Control

invariance [2, 3, 4, 5]. It also enjoys from sample and computational efficiency during training and inference.
It can guarantee robustness to physical perturbations when coupled with impedance control laws and capable
of modulating desired interaction forces, benefiting from energy-aware derivations and theoretical analyses
that are fundamental to ensure safety and stability when humans and robots come in contact to achieve a
shared task. The foundation of this work is detailed in my co-authored textbook, “Learning for Adaptive
and Reactive Robot Control: A Dynamical Systems Approach,” published by MIT Press in February 2022
[6], which serves as the main textbook for my new graduate-level course.

Reactive Human-in-the-loop Control We have shown that introducing theoretical stability and con-
vergence guarantees to robot motion policies is an elegant and efficient way to handle physical perturbations
when performing tasks in the real dynamic world. Nevertheless, such theoretical guarantees are only met in
practice at the motion planning layer, assuming that the robot has perfect state and environment knowledge
at the required perception and control frequencies. Hence, in my current research, I propose to explicitly
introduce feedback into all the processing layers of a robot’s control architecture, as I depict in Fig. 2.
Considering feedback in each of the robots processing units gives us a path towards achieving reactivity and
adaptivity at all layers of control. However, to ensure safety, stability and convergence of the robot’s behavior
at all layers requires the introduction of: (Goal I) robot learning algorithms that take such feedback loops
and interconnection between layers into account during training and execution, (Goal II) control algorithms
that are capable of ensuring safety for both the human and the robot when they are physically interacting
with the world and each other; and (Goal III) robust estimation algorithms that deal with faulty perception
systems and noisy sensors to predict and estimate human, robot and environment states; all while being
aware of both the robot and the humans perceptual, physical and cognitive constraints.

For the past three years, with my research group1 and external collaborations, I have been working on
addressing these challenges, with highly successful and recognized contributions summarized below.

Goal I – Efficient and Adaptive Robot Learning from and with Humans One of the most con-
cerning limitations of the LfD approach is task generalization. While recent LfD approaches have tackled this
by learning from multiple contexts, these approaches are data hungry and offer no stability and convergence
guarantees. On the other hand, current DS learning techniques (used to) lack i) the expressivity to encode
complex skills and ii) flexibility to generalize to new task instances as they ignore explicit task parameters that
inherently change the underlying trajectories. Hence, in my group we began a quest to expand the capabilities
of DS-based learning algorithms publishing our work at major robotics and robot learning venues: CORL,
ICRA, IROS, ICLR and RA-L [7, 8, 9, 10, 11, 12, 13]. In terms of efficiency, we have developed parallellized
statisical inference techniques [8] that achieve almost real-time learning performance of complex manipulation
tasks, requiring from 1 to a handful of human demonstrations. In terms of expressivity, we have leveraged
tools from differential geometry [10] to learn DS motion policies in SE(3) space, which is the proper mathe-
matical manifold in which a robot’s end-effector lives, showing that we can teach robots complex motion skills
like opening doors, stacking plates in racks and pouring liquid into a bowl, all with robustness to perturba-
tions (in both position and orientation). Further, we have been exploring the use of neural architectures such
as neural ordinary differential equations [11] to encapsulate cyclical motions like stirring, polishing and wip-
ing. While the control theoretic guarantees from all of these works have been derived from Lyapunov theory,
we are also exploring the use of contraction theory to enforce stability in latent space representations of SE(3)
tasks [12]. Furthermore, we have also tackled the problem of dynamically grasping objects while adapting to

1See my lab’s youtube channel: https://www.youtube.com/@figueroa-robotics-lab
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multiple potential grasps with a continuous energy-based SE(3) motion representation that is updated in real-
time [13], achieving dynamic handovers from humans to robots while satisfying robot feasibility constraints.

Figure 3: Elastic Motion Policies.

All of these methods are manifestations of the principle idea
that being aware of the data and task constraints in our pol-
icy formulations leads to efficient learning. While introducing
stability and convergence guarantees to motion policies is de-
sirable, such guarantees no longer hold if the motion policy is
used to perform a high-level task, such as transporting materi-
als, or when the environments or context that the motion was
demonstrated in change, leading to answer the following ques-
tion: Can we lift the stability and convergence guarantees to
the high-level task execution layer to ensure recovery and suc-
cessful task execution in the presence of failures or changes in
the environment? To tackle this, we have combined concepts
of hybrid systems bisimulation with the motion-level stability
guarantees and linear temporal logic specifications to i) detect
failures in task execution, ii) learn from those failures and iii)
recover from those failures. Such robustness to perturbations
at the task and motion level had not been addressed before.
Hence, warranting an oral presentation at CORL 22 with 6%
acceptance rate [7]. A subsequent work explores the intro-
duction of reactive temporal logic rules [14] to switch between
learned DS motion policies triggered by perceptual changes in
the task and human intention. We then addressed the general-
ization problem by properly embedding geometric descriptors
of a task into a DS formulation, transfer to other task instances can be done in less than 1 second without
needing more demonstrations while preserving desirable control-theoretic guarantees [9], ensuring safety and
stability of both the low-level motion and the high-level task. Our most recent efforts involve real-time task
transfer of a learned multi-step DS policy integrated with high-level semantic information, which we refer to
as Elastic Motion Policy. I foresee this approach to have an impact on the robot learning community as we
envision it to be used also for data augmentation to reduce human effort for current data-hungry learning
strategies. Finally, we have also been exploring how to introduce such control theoretic guarantees into
visuomotor policies with our fist attempt being an out-of-distribution recovery policy that brings the robot
back to the training data manifold [15]. This work was invited for a Spotlight presentation (5/21 papers) at
CoRL 2024 Workshop on Lifelong Learning for Home Robots.
Goal II – Safe and Adaptive Control for Physical Interaction Safety in robotics can be defined from
two perspectives, safety for humans or robots. A robot is safe for humans if it can either i) avoid unwanted
collisions or ii) be compliant and passive to desired contacts; i.e., the robot absorbs and follows human
physical guidance and external forces. So, which one is more important? During my postdoctoral work, I
explored this question. I showed that allowing a relaxed definition of safety: avoid collision, but if collision
is unavoidable then minimize impact [16], yields not only success in a complex task, like a robot dressing
a human, but also the task is performed more efficiently than with purely collision avoidance requirements.
Nevertheless, the correct approach depends on the task requirements, the robot capabilities, and expected
behavior. Humans (and most animals) have an inherent intuition that triggers the decision of when to
comply?, when to avoid? and when to switch?. At the core of this problem is coordination, we either
coordinate with another agent to avoid it or to comply with it. Our recent efforts in this regard have been
published in major robotics venues RA-L, IJRR, TRO and ICRA [17, 18, 19, 20] and summarize next.

The primordial task of guaranteeing safety for humans in close-proximity to robots is to avoid unwanted
collisions. The problem of collision avoidance is a long-standing problem in robotics which becomes even
more challenging to guarantee in dynamic environments with complex shaped obstacles (e.g., the human
body or cluttered human environments). State-of-the-art approaches that ensure no collision or no local
minima tend to be slow and not reactive, whereas purely reactive methods are prone to local minima and
potential task failures (robot freezing problem). To this end, building on my PhD work on real-time robot
collision avoidance using learning-based boundary functions, we have developed safe real-time algorithms
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that are capable of escaping local minima through a combination of sampling-based MPC and DS motion
policies in high-dimensional robot’s joint space, allowing safe real-time human-robot co-existence [17, 18].
Furthermore, in task space we have developed a theoretical framework to ensure no local minima when
applying collision-aware modulation to DS motion policies. In particular, we introduce the notion of on-
manifold modulation that leverages the isosurfaces created by differentiable boundary functions as manifolds
to navigate on [19]. This method achieved real-time, 1kHZ, reactive safe-collision avoidance of highly clut-
tered dynamic workspaces in 3D space. We have recently extended this idea to the more general safety
filter approach, control-barrier functions, to guarantee no local minima and ensure task success for real-time
navigation of non-holonomic systems with tight input constraints, allowing humans to walk freely alongside
robots.

Figure 4: Real-time Joint Space Collision Avoidance [18], On-Manifold Workspace Modulation Strategy [19],
Constrained Passive Interaction Control [20], Current work on Safe Real-time Human-Aware Navigation

In tasks where robots are allowed to make contact with humans (and viceversa) we must ensure that the
robots are passive and compliant while also avoiding self-harm. Due to the unconstrained nature of passivity-
based impedance control laws, the robot is vulnerable to infeasible and unsafe configurations upon unruly
physical perturbations. Hence, we proposed a novel control architecture that allows a torque-controlled robot
to guarantee safety constraints (such as kinematic limits, self-collisions, external collisions and singularities)
and is passive only when feasible [20] through a real-time quadratic programming based approach. While
successful, one of the main limitations of optimization-based torque control is the need for accurate dynamics
models. This is particularly challenging to achieve when the robot is tasked to manipulate objects of unknown
mass autonomously or together with a human. Adapting to unknown dynamics model mismatch errors
through multi-modal sensing and providing feasible solutions to highly constrained optimization problems
for real-time torque control are the current research directions of my group in this topic.

Goal III – Constraint-Aware Robust Estimation for Interactive & Assistive Tasks In order to
successfully exploit the power of the adaptive motion policies and control algorithms developed in (Goal I
and II) for interactive and assistive tasks, we need robust estimation algorithms that can reason about object
permanence, object dynamics, theory of mind, motion, and human intention prediction. In fact, I argue that
a redesign of state and intention estimation algorithms is needed to address the often ignored perceptual
and physical constraints that arise in human-robot interactive scenarios. While physical constraints, like
kinematic and dynamical limits are known beforehand for a robot they are particularly difficult to estimate
for a human partner. Furthermore, perceptual constraints can come in the form of faulty or limited perception
systems which may arise due to sensors with limited field of view, occlusion/self-occlusions or sensory noise
hindering the proper estimation of the state/intent of the human. To tackle these issues, and with the
assumption that perception will always be faulty, we have developed state estimation algorithms, which I
refer to as permanence filters, for rigid multi-object [21] and human skeleton tracking [22]. These filters
provide an informed estimate of predicted states aware of perceptual (occlusions) and physical (skeleton
biomechanics), even in the presence of long-term occlusions, along with a measure of confidence to enhance
estimation and control. They have been evaluated on challenging scenarios of severe occlusions and multi-
person self-occlusions, and showcase superior performance over data-driven tracking algorithms.

Towards Physical Assistance When a robot and a human come in contact with each other through
an object to accomplish a shared physical task, they form a tightly coupled (dyadic) dynamical system with
each active sub-system of the dyad differing in its perceptual, physical and cognitive capabilities. For tasks
such as co-manipulating a heavy or large object, intent estimation (be it at the action, motion or task level)
is useless for a controller if it is not feasible for both the human and the robot to perform. Hence, to ensure
that the robot controller is receiving a feasible command in such scenarios, we developed a tightly coupled
estimation and control algorithm that is aware of and can guarantee both human and robot’s internal and
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Figure 5: Object permanence filter tracking occluded objects with no disruptions [21], Real-time intent
estimation from surface EEG (electroencelography) signals [24], Constraint-aware intent estimation and
control [23] and most recent unpublished work on estimation of human joint angle, torque and exercise
completion rates from surface EMG (electromyography) and wearable ultrasound sensors.

external physical constraints. Constraints that include kinematic limits and collision avoidance constraints;
while seamlessly adapting the assistive force based on the confidence of the intent estimation [23]. When a
robot and human are physically interacting, there is an exchange of energy and power, this produces not only
vulnerabilities to kinematic limits but also to dynamic limits. Thus, besides robust estimation capabilities,
a fluid and safe regulation of interaction forces and power exchange of the coupled dynamics is necessary in
order to ensure stable and fluid physical interaction, in particular for high-load safety-critical tasks. Further-
more, when interacting with a human that has mobility issues, tracking purely kinematics is insufficient for
proper state or intent estimation. We need to be able to disambiguate a person’s intent with their capability to
actually achieve that task; so that the robot can adapt its physically assistive forces accordingly. My current
pursuit to achieve this is by tracking human biosignals, in real-time, through wearable sensing technologies.

Figure 6: Muscle-in-the-loop adap-
tive robotic physical therapy.

Via active collaborations with colleagues from the Penn Engineering and
the Penn Medical school we have developed real-time state and intent
estimation processing pipelines from surface EEG (electroencelography)
signals [24], surface EMG (electromyography) and US (ultrasound) sen-
sors. For our first foray in this research direction we evaluated the fea-
sibiliy of using non-invasive EEG signals to detect a human’s intent to
move left or right arm [24].; achieving real-time performance coupled
with a robot assistant providing an object to the closest predicted arm.
Most recently we have been developing sparse neural network based
processing pipelines to use Ultrasound images and EMG sensors to pre-
dict in real-time joint angle, torques and exercise completion rates for
isolated joints when doing heavy-lifting exercises like bicep curls and
shoulder lifts (Fig. 5). Through these developments we are currently
waiting for the IRB approval of a protocol for a user study in which our US processing pipeline is coupled
to an exercise assistive robotic arm, as depicted in Fig. 6. The goal of this study is to validate our novel
muscle-in-the-loop robotic exercise assistant, which we envision can be used in a range of applications from
augmented high-performance training to physical therapy and muscle rehabilitation. These efforts have led
me to build strong collaborations with faculty from the Department of Physical Medicine and Rehabilitation,
as showcased by one of our recent published works on learning realistic joint space range of motion boundary
functions for diagnosis, monitoring and robotic rehabilitation therapy interventions of stroke survivors [25].

Summary and Future Outlook Over the past three years at Penn, I have focused on developing foun-
dational algorithms for learning (Goal I), control (Goal II), and estimation (Goal III) to enable physical
and perceptual adaptive intelligence for fluid collaborative human-robot autonomy. Looking ahead, my goals
remain centered on addressing the challenges of physical human-robot interaction. I aim to leverage control-
theoretic and geometry-informed approaches, inspired by principles from physics, biology and psychology, to
realize truly collaborative robots that are both safe and efficient for humans. As robots increasingly engage
with our human-centric world, understanding how to control robots to maintain stable physical interactions
with dynamic human partners will have broader applications, such as enabling robots to collaborate with
other robots or perform contact-rich manipulation tasks in safety-critical scenarios. The outcomes of my
research are expected to drive significant advancements in both the theoretical foundations and practical ap-
plications of robotics. These advancements have the potential to transform industries such as manufacturing,
healthcare, and service robotics, while setting new benchmarks for future research in developing physically
adaptive robots designed to interact seamlessly with humans and their environments.
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